13.10.2023

Как собрать деревянную головоломку из 12 частей. Невозможное возможно, или как собрать основные модели кубика рубика


Мир устроен так, что вещи в нем могут жить дольше, чем люди, иметь разные имена в разное время и в разных странах. Игрушка, которую вы видите на рисунке, известна в нашей стране как «головоломка адмирала Макарова». В других странах она имеет другие имена, из которых наиболее часто встречающиеся - «дьявольский крест» и «чертов узел».

Этот узел связывается из 6 брусков квадратного сечения. В брусках имеются пазы, благодаря которым и возможно скрещивание брусков в центре узла. Один из брусков не имеет пазов, он закладывается в узел последним, а при разборке вынимается первым.

Купить одну из таких головоломок можно, например, на my-shop.ru

А так же вот различные вариации на тему раз , два , три , четыре , пять , шесть , семь , восемь .

Автор этой головоломки неизвестен. Появилась она много веков назад в Китае. В ленинградском Музее антропологии и этнографии им. Петра Великого, известном как «Кунсткамера», хранится старинная, сандалового дерева шкатулка из Индии, в 8 углах которой пересечения брусков каркаса образуют 8 головоломок. В средние века моряки и купцы, воины и дипломаты забавлялись такими головоломками и заодно развозили их по свету. Адмирал Макаров, дважды бывавший в Китае до своей последней поездки и гибели в Порт-Артуре, привез игрушку в Петербург, где она вошла в моду в светских салонах. В глубину России головоломка проникала и другими дорогами. Известно, что в деревню Олсуфьево Брянской области чертов узел принес солдат, вернувшийся с русско-туредкой войны.
Сейчас головоломку можно купить в магазине, но приятнее сделать ее своими руками. Наиболее подходящий размер брусков для самодельной конструкции: 6х2х2 см.

Многообразие чертовых узлов

До начала нашего века, за несколько сот лет существования игрушки в Китае, Монголии и Индии было придумано более ста вариантов головоломки, отличающихся между собой конфигурацией вырезов в брусках. Но самыми популярными остаются два варианта. Показанный на рисунке 1 решается довольно легко, просто его и изготовить. Именно эта конструкция использована в древней индийской шкатулке. Из брусков рисунка 2 складывается головоломка, которая называется «Чертов узел». Как вы догадываетесь, свое название она получила за трудность решения.

Рис. 1 Простейший вариант головоломки «чёртов узел»

В Европе, где, начиная с конца прошлого века, «Чертов узел» получил широкую известность, энтузиасты стали придумывать и делать наборы брусков с разными конфигурациями вырезов. Один из наиболее удачных комплектов позволяет получать 159 головоломок и состоит из 20 брусков 18 видов. Хотя все узлы внешне неразличимы, они совершенно по разному устроены внутри.

Рис. 2 «Головломка адмирала Макарова»

Болгарский художник, профессор Петр Чуховски, автор множества причудливых и красивых деревянных узлов из разного количества брусков, тоже занимался головоломкой «Чертов узел». Он разработал набор конфигураций брусков и исследовал всевозможные комбинации 6 брусков для одного простого его поднабора.

Настойчивее всех в таких поисках был голландский профессор математики Ван де Боер, который своими руками сделал набор из нескольких сотен брусков и составил таблицы, показывающие, как собрать 2906 вариантов узлов.

Это было в 60-е годы, а в 1978 году американский математик Билл Катлер написал программу для компьютера и методом полного перебора определил, что существует 119 979 вариантов головоломки из 6 элементов, отличающихся друг от друга комбинациями выступов и впадин в брусках, а также размещением брусков, при условии, что внутри узла нет пустот.

Удивительно большое число для такой маленькой игрушки! Поэтому для решения задачи и понадобилась ЭВМ.

Как ЭВМ решает головоломки?

Конечно, не так, как человек, но и не каким-то волшебным способом. Компьютер решает головоломки (и другие задачи) по программе, программы пишут программисты. Пишут, как им удобно, но так, чтобы было понятно и ЭВМ. Как же ЭВМ манипулирует деревянными брусками?
Будем исходить из того, что мы имеем набор из 369 брусков, отличающихся друг от друга конфигурациями выступов (этот набор первым определил Ван де Боер). В ЭВМ надо ввести описания этих брусков. Минимальный вырез (или выступ) в бруске - это кубик с ребром, равным 0,5 толщины бруска. Назовем его единичным кубиком. В целом бруске содержатся 24 таких кубика (рисунок 1). В ЭВМ для каждого бруска заводится «малый» массив из 6х2х2=24 чисел. Брусок с вырезами задается последовательностью 0 и 1 в «малом» массиве: 0 соответствует вырезанному кубику, 1 - целому. Каждый из «малых» массивов имеет свои номер (от 1 до 369). Любому из них можно присвоить еще номер от 1 до 6, отвечающий положению бруска внутри головоломки.

Перейдем теперь к головоломке. Представим, что она помещается внутрь куба размером 8х8х8. В ЭВМ этому кубу соответствует «большой» массив, состоящий из 8х8х8=512 ячеек-чисел. Поместить определенный брусок внутрь куба - это значит заполнить соответствующие ячейки «большого» массива числами, равными номеру данного бруска.

Сравнивая 6 «малых» массивов и основной, ЭВМ (т. е. программа) как бы складывает вместе 6 брусков. По результатам сложения чисел она определяет, сколько и каких «пустых», «заполненных» и «переполненных» ячеек образовалось в основном массиве. «Пустые» ячейки соответствуют пустому пространству внутри головоломки, «заполненные» - соответствуют выступам в брусках, а «переполненные» - попытке соединить вместе два единичных кубика, что, естественно, запрещено. Такое сравнение производится многократно, не только с разными брусками, но и с учетом их разворотов, мест, которые они занимают в «кресте», и т. п.

В результате отбирают те варианты, в которых нет пустых и переполненных ячеек. Для решения этой задачи достаточно было бы «большого» массива размером 6х6х6 ячеек. Оказывается, однако, что существуют комбинации брусков, полностью заполняющие внутренний объем головоломки, но при этом разобрать их невозможно. Поэтому программа должна уметь проверять узел на возможность разборки. Для этого Катлер и взял массив 8х8х8, хотя его размеры, возможно, недостаточны для проверки всех случаев.

Он заполняется информацией о конкретном варианте головоломки. Внутри массива программа пытается «двигать» бруски, т. е. перемещает в «большом» массиве части бруска размером 2х2х6 ячеек. Перемещение происходит на 1 ячейку в каждом из 6 направлении, параллельных осям головоломки. Результаты тех из 6 попыток, в которых не образуется «переполненных» ячеек, запоминаются как исходные положения для следующих шестерок попыток. В результате строится дерево всевозможных движений до тех пор, пока какой-нибудь брусок целиком не выйдет из основного массива или же после всех попыток останутся «переполненные» ячейки, что соответствует варианту, который невозможно разобрать.

Вот так были получены на ЭВМ 119 979 вариантов «Чертова узла», в том числе не 108, как полагали древние, а 6402 варианта, имеющих 1 целый, без вырезов брусок.

Суперузел

Обратим внимание, что Катлер отказался от исследования общей задачи - когда узел содержит и внутренние пустоты. В этом случае количество узлов из 6 брусков сильно возрастает и полный перебор, необходимый для поиска допустимых решений, становится нереальным даже для современного компьютера. Но как мы увидим сейчас, самые интересные и трудные головоломки содержатся именно в общем случае - разборку головоломки тогда можно сделать далеко не тривиальной.

Благодаря наличию пустот, появляется возможность последовательно передвинуть несколько брусков прежде, чем удастся полностью отделить какой-либо брусок. Движущийся брусок отцепляет некоторые бруски, разрешает движение следующего бруска и одновременно зацепляет другие бруски.
Чем больше нужно проделать манипуляций при разборке, тем интереснее и труднее вариант головоломки. Пазы в брусках расположены так хитро, что поиск решения напоминает блуждание по темному лабиринту, в котором все время наталкиваешься то на стены, то на тупики. Такого типа узел несомненно заслуживает и нового имени; мы будем называть его «суперузел». Мерой сложности суперузла назовем количество движений отдельных брусков, которые необходимо сделать до того, как первый элемент будет отделен от головоломки.

Мы не знаем, кто придумал первый суперузел. Наиболее знамениты (и наиболее трудны в решении) два суперузла: «колючка Билла» сложности 5, придуманная У. Катлером, и «суперузел Дюбуа» сложности 7. До сих пор считалось, что степень сложности 7 едва ли можно превзойти. Однако первому из авторов этой статьи удалось усовершенствовать «узел Дюбуа» и увеличить сложность до 9, а затем, используя некоторые новые идеи, получить суперузлы со сложностью 10, 11 и 12. Но число 13 остается пока непреодолимым. Может быть, число 12 является самой большой сложностью суперузла?

Решение суперузлов

Приводить чертежи таких трудных головоломок, как суперузлы, и не раскрывать их секретов было бы слишком жестоко по отношению даже к знатокам головоломок. Мы дадим решение суперузлов в компактной, алгебраической форме.

Перед разборкой берем головоломку и ориентируем так, чтобы номера деталей соответствовали рисунку 1. Последовательность разборки записывается в виде сочетания цифр и букв. Цифры означают номера брусков, буквы - направления движения в соответствии с показанной на рисунках 3 и 4 системой координат. Черта над буквой означает движение в отрицательном направлении оси координат. Один шаг - это перемещение бруска на 1/2 его ширины. Когда брусок передвигается сразу на два шага, его перемещение записывается в скобках с показателем степени 2. Если передвигают сразу несколько деталей, которые зацеплены между собой, то их номера заключают н скобки, например (1, 3, 6) х. Отделение бруска от головоломки отмечается вертикальной стрелкой.
Приведем теперь примеры лучших суперузлов.

Головоломка У. Катлера («колючка Билла»)

Она состоит из деталей 1, 2, 3, 4, 5, 6, показанных на рисунке 3. Там же приводится алгоритм ее решения. Любопытно, что в журнале «Scientific American» (1985, № 10) приведен другой вариант этой головоломки и сообщается, что «колючка Билла» имеет единственное решение. Различие между вариантами - всего в одном бруске: деталях 2 и 2 В на рисунке 3.

Рис. 3 «Колючка Билла», разработанна с помощью ЭВМ.

Из-за того, что деталь 2 В содержит меньше вырезов, чем деталь 2, вставить ее в «колючку Билла» по указанному на рисунке 3 алгоритму не удается. Остается предположить, что головоломка из «Scientific American» собирается каким-то другим способом.

Если это так и мы ее соберем, то после этого сможем заменить деталь 2 В на деталь 2, так как последняя занимает меньший объем, чем 2 В. В результате мы получим второе решение головоломки. Но «колючка Билла» имеет единственное решение, и из нашего противоречия можно сделать только один вывод: во втором варианте допущена ошибка в рисунке.
Аналогичная ошибка сделана еще в одной публикации (Дж. Слокум, Дж. Ботерманс «Puzzles old and new», 1986), но уже в другом бруске (деталь 6 С на рисунке 3). Каково же было тем читателям, которые пытались и, возможно, пытаются до сих пор решить эти головоломки?

Головоломка Филиппа Дюбуа (рис. 4)

Она решается за 7 ходов по следующему алгоритму: (6z )^2, 3x . 1z , 4х, 2х, 2у, 2z?. Ha рисунке показано расположение деталей на б таге разборки. Начиная с этого положения, используя обратный порядок алгоритма и изменяя направления движения на противоположные, можно собрать головоломку.

Три суперузла Д. Вакарелова.

Первая из его головоломок (рис. 5) - это усовершенствованный вариант головоломки Дюбуа, он имеет сложность 9. Этот суперузел больше других похож на лабиринт, так как при его разборке возникают ложные ходы, заводящие в тупики. Пример такого тупика - ходы Зх , 1z в начале разборки. А правильное решение такое:

(6z )^2, Зх ,1z, 4х, 2х, 2у, 5x, 5y, 3z?.

Вторая головоломка Д. Вакарелова (рис. 6) решается по формуле:

4z ,1z , Зх, 2х, 2z , Зх , 1z, 6z, Зх , 1х ,3z?

и имеет сложность 11. Она замечательна тем, что брусок 3 на третьем ходу делает шаг Зх, а на шестом ходу возвращается обратно (Зх ); и брусок 1 на втором шаге двигается по 1z , а на 7 ходу делает обратный ход.

Третья головоломка (рис. 7) - одна из самых сложных. Ее решение:
4z , 1z , Зх, 2х, 2z , Зх , 6z , 1z, (1,3,6)х , 5y?
до седьмого хода повторяет предыдущую головоломку, затем, на 9 ходу в ней встречается совершенно новая ситуация: неожиданно все бруски перестают двигаться! И тут необходимо догадаться подвинуть сразу 3 бруска (1, 3, 6), и если это движение считать за 3 хода, то сложность головоломки будет равна 12.

Не посвященный в его секрет может долго вертеть этот деревянный «ежик» в руках, пытаясь разгадать, как же он разбирается и не целиковый ли он вообще, - настолько плотно соединены между собой все брусочки, словно склеенные.

На самом деле можно купить механическую головоломку , если постараться и поискать не только руками, но и поломать голову над загадкой сборки, - удастся «нащупать» ту единственную деталь, на которую и следует нажать, чтобы она выдвинулась и клубок из брусочков распался на его составляющие.

А состоит головоломка из шести отдельных брусочков одинакового сечения и длины: 150x24x24 мм, и только один из них- целый. Все же остальные имеют различной конфигурации пазы, благодаря которым они при определенной последовательности сборки входят в такое взаимное зацепление, которое и создает впечатление неразъемности этой игрушки.

Почему же один из брусочков - без пазов? Дело в том, что он играет роль замка: после того, как все брусочки нужным образом соединены, остается одно сквозное отверстие, в которое и вдвигается замковый брусок, плотно входящий в секретное отверстие. Достаточно его выдвинуть обратно - и «ежик» рассыплется.

1,2 - стартовая пара брусков; 3,4 -основная пара; 5 - предзамковый брусок; 6 - финальный, замковый брусок

Конфигурация пазов у составляемых брусочков показана на рисунках. У каждого бруска она своя: их рисунок не повторяется, как и ширина, и месторасположение Единственное общее у них - глубина: у всех пазов она точно соответствует половине сечения брусков, то есть 12 мм.

На всех брусках на рисунках проставлены цифры: это не просто количество брусков в головоломке, а еще и последовательность сборки. Цифры могут быть даже воспроизведены и остаться на брусках - раскрыть секрет разборки они не могут, даже, наоборот, запутают разгадывающего, потому что он подумает, что это какая-то последовательность разборки игрушки. Но для большей засекреченности можно заменить их нанесением рисок на брусках.

Успех игрушки будет зависеть от аккуратности и точности выполнения заготовок и пазов на них. Только тщательно изготовленные детали станут легко и прочно соединяться и держаться в собранном виде как единое целое.

А - стартовое положение первых двух брусков; Б,В - присоединение основной пары брусков; Г-встраивание предзамкового бруска; Д-введение замкового бруска

Порядок сборки головоломки показан на рисунках. Деталь 1 удерживается вертикально, и к ней плотно приставляется перевернутая горизонтально деталь 2. Снизу к ним добавляется повернутая на полоборота деталь 3, поверх которой укладывается деталь 4 так, чтобы ее гладкая сторона оказалась сверху. К ним прижимается в вертикальном положении деталь 5 и вдвигается своим «пояском» в виднеющийся паз детали 2. Теперь все они уже прочно связаны между собой, но еще способны распадаться. Вот на этой стадии и вводится в одно-единственное оставшееся сквозное отверстие последний, гладкий брусок 6, который и замкнет окончательно всю конструкцию.

Интеллект человека нуждается в постоянных тренировках ничуть не меньше, чем тело в физических нагрузках. Лучший способ развивать, расширять способности этого качества психики - разгадывать кроссворды и решать головоломки, самой известной из которых, конечно, является кубик Рубика. Однако далеко не всем удаётся его собрать. Справиться с этой задачей поможет знание схем и формул решения сборки этой замысловатой игрушки.

Что представляет собой игрушка-головоломка

Механический куб из пластмассы, внешние грани которого состоят из малых кубиков. Размер игрушки определяется количеством малых элементов:

  • 2 х 2;
  • 3 х 3 (первоначальная версия кубика Рубика была именно 3 х 3);
  • 4 х 4;
  • 5 х 5;
  • 6 х 6;
  • 7 х 7;
  • 8 х 8;
  • 9 х 9;
  • 10 х 10;
  • 11 х 11;
  • 13 х 13;
  • 17 х 17.

Любой из малых кубов может вращаться в три стороны по осям, представленным в виде выступов фрагмента одного из трёх цилиндров большого куба. Так конструкция имеет возможность свободно вращаться, но при этом малые детали не выпадают, а держатся друг за друга.

Каждая грань игрушки включает 9 элементов, окрашенных в один из шести цветов, находящиеся друг напротив друга попарно. Классической комбинацией оттенков является:

  • красный напротив оранжевого;
  • белый напротив жёлтого;
  • синий напротив зелёного.

Однако современные версии могут быть окрашены в другие сочетания.

Сегодня можно встретить кубики Рубика разного цвета и форм

Это интересно. Кубик Рубика существует даже в версии для слепых. Там вместо цветовых квадратов есть рельефная поверхность.

Цель сборки головоломки состоит в упорядочивании малых квадратов так, чтобы они образовали грань большого куба одного цвета.

История появления

Идея создания принадлежит венгерскому архитектору Эрне Рубику, который, на самом деле, создавал не игрушку, а наглядное пособие для своих студентов. Таким интересным способом находчивый преподаватель планировал объяснить теорию математических групп (алгебраических структур). Случилось это в 1974 году, а уже через год изобретение было запатентовано как игрушка-головоломка - настолько прикипели душой будущие архитекторы (и не только они) к замысловатому и яркому пособию.

Выпуск первой серии головоломки был приурочен к новому 1978 году, но в мир игрушка вышла благодаря предпринимателям Тибору Лакзи и Тому Кремеру.

Это интересно. С момента появления кубика Рубика («магического куба», «волшебного куба») было продано около 350 миллионов экземпляров по всему миру, что ставит головоломку на первое место по популярности среди игрушек. Не говоря уже о десятках компьютерных игр, основанных на таком принципе сборки.

Кубик Рубика - это знаковая игрушка для многих поколений

В 80-е годы с кубиком Рубика познакомились жители СССР, а в 1982 в Венгрии был организован первый чемпионат мира по сборке головоломки на скорость - спидкубинг. Тогда лучший результат составил 22,95 секунды (для сравнения: в 2017 году установлен новый мировой рекорд: 4,69 секунды).

Это интересно. Любители собирать разноцветную головоломку настолько привязаны к игрушке, что одних соревнований по сборке на скорость им оказывается мало. Поэтому в последние годы появились чемпионаты по решению головоломки с закрытыми глазами, одной рукой, ногами.

Что такое формулы для кубика Рубика

Собрать волшебный куб - это значит составить все маленькие детали так, чтобы получилась целая грань одного цвета, нужно воспользоваться алгоритмом Бога. Этот термин обозначает набор из минимума действий, которые позволят разрешить головоломку, имеющую конечное число ходов и комбинаций.

Это интересно. Кроме кубика Рубика, алгоритм Бога применяется к таким головоломкам, как пирамидка Мефферта, Такен, Ханойская башня и др.

Поскольку магический куб Рубика был создан как математическое пособие, то его сборка раскладывается по формулам.

Сборка кубика Рубика основывается на использовании специальных формул

Важные определения

Для того чтобы научиться понимать схемы решения головоломки, необходимо познакомиться с названиями её частей.

  1. Углом называется сочетание трёх цветов. В кубике 3 х 3 их будет 3, в версии 4 х 4 – 4 и т.д. В игрушке 12 углов.
  2. Ребром обозначают два цвета. Их в кубике 8 штук.
  3. Центр содержит один цвет. Всего их 6.
  4. Грани, как уже было сказано, это одновременно вращающиеся элементы головоломки. Ещё они называются «слоями» или «ломтиками».

Значения в формулах

Следует отметить, что формулы по сборке составлены на латинице - именно такие схемы широко представлены в различных руководствах по работе с головоломкой. Но есть и русифицированные версии. В перечне ниже даны оба варианта.

  1. Фронтальная грань (фронт или фасад) – это передняя грань, которая находится цветом к нам [Ф] (или F - front).
  2. Задняя грань - это грань, которая находится центром от нас [З] (или B - back).
  3. Правая Грань - грань, что находится справа [П] (или R - right).
  4. Левая Грань - грань, которая находится слева [Л] (или L - left).
  5. Нижняя Грань - грань, которая находится внизу [Н] (или D - down).
  6. Верхняя Грань - грань, которая находится вверху [В] (или U - up).

Фотогалерея: части кубика Рубика и их определения

Для разъяснения обозначений в формулах используем русскую версию - так будет понятнее новичкам, но для тех, кто захочет перейти на профессиональный уровень спидкубинга без международной системы обозначений на английском языке не обойтись.

Это интересно. Международная система обозначения принята Всемирной ассоциацией кубика (World Cube Association, WCA).

  1. Центральные кубики обозначены в формулах одной строчной буквой - ф, т, п, л, в, н.
  2. Угловые - тремя буквами по наименованию граней, например, фпв, флни т. д.
  3. Прописными буквами Ф, Т, П, Л, В, Н обозначаются элементарные операции поворота соответствующей грани (слоя, ломтика) куба на 90° по часовой стрелке.
  4. Обозначения Ф", Т", П", Л", В", Н" соответствуют повороту граней на 90° против часовой стрелки.
  5. Обозначения Ф 2 , П 2 и т. д. говорят о двойном повороте соответствующей грани (Ф 2 = ФФ).
  6. Буквой С обозначают поворот среднего слоя. Подстрочный индекс показывает, со стороны какой грани следует смотреть, чтобы проделать этот поворот. Например, С П - со стороны правой грани, С Н - со стороны нижней, С" Л - со стороны левой, против часовой стрелки и т. д. Понятно, что С Н =С" В, С П =С" Л и т. п.
  7. Буква О - поворот (оборот) всего куба вокруг своей оси. О Ф - со стороны фасадной грани по часовой стрелке и т. д.

Запись процесса (Ф" П") Н 2 (ПФ) означает: повернуть фасадную грань против часовой стрелки на 90°, то же - правую грань, повернуть нижнюю грань дважды (то есть на 180°), повернуть правую грань на 90° по часовой стрелке, повернуть фасадную грань на 90° по часовой стрелке.

Неизвестен

http://dedfoma.ru/kubikrubika/kak-sobrat-kubik-rubika-3x3x3.htm

Новичкам важно научиться понимать формулы

Как правило, в инструкциях по сборке головоломки в классических цветах рекомендуется держать головоломку жёлтым центром вверх. Это совет особенно важен для новичков.

Это интересно. Есть сайты, визуализирующие формулы. Причём скорость процесса сборки можно устанавливать самостоятельно. Например, alg.cubing.net

Как решить головоломку Рубика

Существует два типа схем:

  • для новичков;
  • для профессионалов.

Их отличие в сложности формул, а также скорости сборки. Для новичков, конечно, будут более полезны соответствующие их уровню владения головоломкой инструкции. Но и они, потренировавшись, через время смогут складывать игрушку за 2–3 минуты.

Как собрать стандартный куб 3 х 3

Начнём со сборки классического 3 х 3 кубика Рубика с помощью схемы из 7 шагов.

Классической версией головоломки является кубик Рубика 3 х 3

Это интересно. Обратный процесс, применяемый для решения тех или иных неправильно расположенных кубиков, представляет собой обратную последовательность действия, описанного формулой. То есть формулу необходимо прочитать справа налево, а вращать слои против часовой стрелки, если было указано прямое перемещение, и наоборот: прямое, если описано противоположное.

Пошаговая инструкция сборки

  1. Начинаем со сборки креста верхней грани. Нужный кубик опускаем вниз, повернув соответствующую боковую грань (П, Т, Л)и выводим на фасадную грань операцией Н, Н" или Н 2 . Заканчиваем этап выведения зеркальным поворотом (обратным) той же боковой грани, восстанавливающим первоначальное положение затронутого рёберного кубика верхнего слоя. После этого проводим операцию а) или б) первого этапа. В случае а) кубик вышел на фасадную грань так, что цвет его передней грани совпадает с цветом фасада. В случае б) кубик надо не только переместить наверх, но и развернуть его, чтобы он был правильно сориентирован, став на своё место.

    Собираем крест верхней линии

  2. Отыскивается нужный угловой кубик (имеющий цвета граней Ф, В, Л) и тем же приёмом, который описан для первого этапа, выводится в левый угол избранной фасадной грани (или жёлтой). Здесь могут быть три случая ориентации этого кубика. Сравниваем свой случай с рисунком и применяем одну из операций второго этапа а, били в. Точками на схеме отмечено место, на которое должен стать нужный кубик. Отыскиваем на кубе остальные три угловых кубика и повторяем описанный приём для перемещения их на свои места верхней грани. Результат: верхний слой подобран. Первые два этапа почти ни у кого не вызывают затруднений: довольно легко можно следить за своими действиями, так как все внимание обращено на один слой, а что делается в двух оставшихся - совсем неважно.

    Подбираем верхний слой

  3. Наша цель: отыскать нужный кубик и сначала вывести вниз на фасадную грань. Если он внизу - простым поворотом нижней грани до совпадения с цветом фасада, а если он в среднем слое, то его нужно сначала опустить вниз любой из операций а)или б), а потом совместить по цвету с цветом фасадной грани и проделать операцию третьего этапа а) или б). Результат: собрано два слоя. Приведённые здесь формулы являются зеркальными в полном смысле этого слова. Наглядно увидеть это можно, если поставить справа или слева от кубика зеркало (ребром к себе) и проделать любую из формул, в зеркале: увидим вторую формулу. То есть операции с фасадной, нижней, верхней (здесь не участвует), и тыльной (тоже не участвует) гранями меняют знак на противоположный: было по часовой стрелке, стало против часовой, и наоборот. А левая грань меняется с правой, и, соответственно, меняет направление поворота на противоположное.

    Отыскиваем нужный кубик и выводим его вниз на фасадную грань

  4. К цели приводят операции, перемещающие бортовые кубики одной грани, не нарушающие в конечном счёте порядка в собранных слоях. Один из процессов, позволяющий подобрать все бортовые грани, дан на рисунке. Там же показано и что происходит при этом с другими кубиками грани. Повторяя процесс, выбрав другую фасадную грань, можно поставить на место все четыре кубика. Результат: рёберные детали стоят на своих местах, но два из них, или даже все четыре, могут быть неверно ориентированы. Важно: прежде чем приступить к выполнению этой формулы, смотрим, какие кубики уже стоят на своих местах - они могут быть неправильно ориентированы. Если ни одного или один, то пробуем повернуть верхнюю грань так, чтобы два, находящиеся на двух соседних боковых гранях (фв+пв, пв+тв, тв+лв, лв+фв), встали на свои места, после этого ориентируем куб так, как показано на рисунке, и выполняем приведённую на этом этапе формулу. Если не получается поворотом верхней грани совместить детали, принадлежащие соседним граням, то выполняем формулу при любом положении кубиков верхней грани один раз и пробуем ещё раз поворотом верхней грани поставить на свои места 2 детали, находящиеся на двух соседних боковых гранях.

    Важно проверить ориентацию кубиков на этом этапе

  5. Учитываем, что разворачиваемый кубик должен быть на правой грани, на рисунке он помечен стрелками (кубик пв). На рисунках а, б,и в представлены возможные случаи расположения неверно ориентированных кубиков (помечены точками). Используя формулу в случае а), выполняем промежуточный поворот В", чтобы вывести второй кубик на правую грань, и завершающий поворот В, который вернёт верхнюю грань в исходное положение, в случае б) промежуточный поворот В 2 и завершающий тоже В 2 , а в случае в) промежуточный поворот В нужно выполнять три раза, после переворота каждого кубика и завершить также поворотом В. Многих смущает то, что после первой части процесса (ПС Н) 4 нужный кубик разворачивается как надо, но порядок в собранных слоях нарушается. Это сбивает с толку и некоторых заставляет бросить на полпути почти собранный куб. Выполнив промежуточный поворот, не обращая внимания на «поломку» нижних слоёв, выполняем операции (ПС Н) 4 со вторым кубиком (вторая часть процесса), и всё становится на свои места. Результат: собран крест.

    Результатом этого этапа будет собранный крест

  6. Углы последней грани ставим на свои места, используя 8-ходовый процесс, удобный для запоминания,- прямой, переставляющий три угловых детали в направлении по часовой стрелке, и обратный, переставляющий три кубика в направлении против часовой стрелки. После пятого этапа, как правило, хотя бы один кубик да сядет на своё место, пусть и неправильно ориентированно. (Если после пятого этапа ни один из угловых кубиков не сел на своё место, то применяем любой из двух процессов для любых трёх кубиков, после этого точно один кубик будет на своём месте.). Результат: все угловые кубики заняли свои места, но два из них (а может, и четыре) могут быть ориентированы неправильно.

    Угловые кубики сидят на своих местах

  7. Многократно повторяем последовательность поворотов ПФ"П"Ф. Поворачиваем куб так, чтобы кубик, который хотим развернуть, был в правом верхнем углу фасада. 8-ходовый процесс (2 х 4 хода) повернёт его на 1 / 3 оборота по часовой стрелке. Если при этом кубик ещё не сориентировался, повторяем 8-ходовку ещё раз (в формуле это отражено индексом «N»). Не обращаем внимания на то, что нижние слои при этом придут в беспорядок. На рисунке показаны четыре случая расположения неправильно ориентированных кубиков (они помечены точками). В случае а) требуется промежуточный поворот В и завершающий В", в случае б) - промежуточный и завершающий поворот В 2 , в случае в)- поворот В выполняется после разворота каждого кубика до правильной ориентации, а завершающий В 2 , в случае г) - промежуточный поворот В также выполняется после разворота каждого кубика до правильной ориентации, и завершающим в этом случае тоже будет поворот В. Результат: последняя грань собрана.

    Возможные ошибки показаны точками

Формулы для исправления располжения кубиков могут быть показаны так.

Формулы для исправления неправильно ориентированных кубиков на последнем этапе

Суть метода Джессики Фридрих

Способов сборки головоломки существует несколько, но одним из самых запоминающихся является вариант, разработанный Джессикой Фридрих - профессором университета в Бингемтоне (штат Нью-Йорк), занимающейся разработки методик скрытия данных в цифровых изображениях. Ещё будучи подростком, Джессика настолько увлеклась кубиком, что 1982 году стала чемпионкой мира по спидкубингу и впоследствии не оставила своего хобби, разработав формулы для быстрой сборки «магического куба». Один из самых популярных вариантов складывания куба называется CFOP - по первым буквам четырёх шагов сборки.

Инструкция:

  1. Собираем крест на верхней грани, который составлен из кубиков на рёбрах нижней грани. Этот этап называется Cross - крест.
  2. Собираем нижний и средний слои, то есть грань, на которой расположен крест, и промежуточный слой, состоящий из четырёх боковых деталей. Название этого шага F2L (First two layers) – первые два слоя.
  3. Собираем оставшуюся грань, не обращая внимания на то, что не все детали на своих местах. Этап носит название OLL (Orient the last layer), что переводится как «ориентация последнего слоя».
  4. Последний уровень - PLL (Permute the last layer) - заключается в правильной расстановке кубиков верхнего слоя.

Видеоинструкции по методу Фридрих

Способ, который был предложен Джессикой Фридрих, настолько понравился спидкуберам, что наиболее продвинутые любители разрабатывают собственные методики по ускорению сборки каждого из этапов, предложенных автором.

Видео: ускорение сборки креста

Видео: собираем первые два слоя

Видео: работаем с последним слоем

Видео: последний уровень сборки по Фридрих

2 х 2

Кубик Рубика 2 х 2 или мини-кубик Рубика также складывается послойно, начиная с нижнего уровня.

Мини-кубик - это облегчённая версия классической головоломки

Инструкция для начинающих по лёгкой сборке

  1. Собираем нижний слой так, чтобы цвета четырёх последних кубиков совпали, а оставшиеся два цвета были такими же, как и цвета соседних деталей.
  2. Приступаем к упорядочиванию верхнего слоя. Обращаем внимание, что на данном этапе цель не совместить цвета, а поставить кубики по местам. Начинаем с определения цвета верха. Здесь всё просто: это будет тот цвет, который не появился в нижнем слое. Вращаем любой из верхних кубиков так, чтобы он попал в положение, когда пересекаются три цвета элемента. Зафиксировав угол, располагаем элементы оставшихся. Используем для этого две формулы: одна для изменения диагональных кубиков, другая - для соседних.
  3. Завершаем верхний слой. Все операции проводим попарно: вращаем один угол, а затем другой, но в противоположном направлении (например, первый по часовой стрелке, второй - против). Можно работать сразу с тремя углами, но в этом случае комбинация будет только одна: либо по часовой, либо против часовой стрелки. Между вращениями углов, поворачиваем верхнюю грань, чтобы отрабатываемый угол оказался в правом верхнем углу. Если работаем с тремя углами, то правильно ориентированный из них ставим сзади слева.

Формулы для вращения углов:

  • (ВФПВ · П"В"Ф")² (5);
  • В²Ф·В²Ф"·В"Ф·В"Ф"(6);
  • ФВФ² · ЛФЛ² · ВЛВ² (7).

Для поворота сразу трёх углов:

  • (ФВПВ"П"Ф"В")² (8);
  • ФВ·Ф"В·ФВ²·Ф"В² (9);
  • В²Л"В"Л²Ф"Л"Ф²В"Ф" (10).

Фотогалерея: сборка кубика 2 х 2

Видео: метод Фридрих для кубика 2 х 2

Собираем самые сложные версии кубика

К таким относятся игрушки с количеством деталей от 4 х 4 и вплоть до 17 х 17.

Модели кубика на много элементов обычно имеют скруглённые углы для удобства манипуляций с игрушкой

Дата: 2013-11-07 Редактор: Загуменный Владислав

Мир устроен так, что вещи в нем могут жить дольше, чем люди, иметь разные имена в разное время и в разных странах, даже можем играть в игры Симпсоны . Игрушка, которую вы видите на рисунке, известна в нашей стране как "головоломка адмирала Макарова". В других странах она имеет другие имена, из которых наиболее часто встречающиеся - "дьявольский крест" и "чертов узел".

Этот узел связывается из 6 брусков квадратного сечения. В брусках имеются пазы, благодаря которым и возможно скрещивание брусков в центре узла. Один из брусков не имеет пазов, он закладывается в узел последним, а при разборке вынимается первым.

Автор этой головоломки неизвестен. Появилась она много веков назад в Китае. В ленинградском Музее антропологии и этнографии им. Петра Великого, известном как "Кунсткамера", хранится старинная, сандалового дерева шкатулка из Индии, в 8 углах которой пересечения брусков каркаса образуют 8 головоломок. В средние века моряки и купцы, воины и дипломаты забавлялись такими головоломками и заодно развозили их по свету. Адмирал Макаров, дважды бывавший в Китае до своей последней поездки и гибели в Порт-Артуре, привез игрушку в Петербург, где она вошла в моду в светских салонах. В глубину России головоломка проникала и другими дорогами. Известно, что в деревню Олсуфьево Брянской области чертов узел принес солдат, вернувшийся с русско-туредкой войны.

Сейчас головоломку можно купить в магазине, но приятнее сделать ее своими руками. Наиболее подходящий размер брусков для самодельной конструкции: 6х2х2 см.

Многообразие чертовых узлов

До начала нашего века, за несколько сот лет существования игрушки в Китае, Монголии и Индии было придумано более ста вариантов головоломки, отличающихся между собой конфигурацией вырезов в брусках. Но самыми популярными остаются два варианта. Показанный на рисунке 1 решается довольно легко, просто его и изготовить. Именно эта конструкция использована в древней индийской шкатулке. Из брусков рисунка 2 складывается головоломка, которая называется "Чертов узел". Как вы догадываетесь, свое название она получила за трудность решения.


Рис. 1 Простейший вариант головоломки "чёртов узел"

В Европе, где, начиная с конца прошлого века, "Чертов узел" получил широкую известность, энтузиасты стали придумывать и делать наборы брусков с разными конфигурациями вырезов. Один из наиболее удачных комплектов позволяет получать 159 головоломок и состоит из 20 брусков 18 видов. Хотя все узлы внешне неразличимы, они совершенно по разному устроены внутри.


Рис. 2 "Головломка адмирала Макарова"

Болгарский художник, профессор Петр Чуховски, автор множества причудливых и красивых деревянных узлов из разного количества брусков, тоже занимался головоломкой "Чертов узел". Он разработал набор конфигураций брусков и исследовал всевозможные комбинации 6 брусков для одного простого его поднабора.

Настойчивее всех в таких поисках был голландский профессор математики Ван де Боер, который своими руками сделал набор из нескольких сотен брусков и составил таблицы, показывающие, как собрать 2906 вариантов узлов.

Это было в 60-е годы, а в 1978 году американский математик Билл Катлер написал программу для компьютера и методом полного перебора определил, что существует 119 979 вариантов головоломки из 6 элементов, отличающихся друг от друга комбинациями выступов и впадин в брусках, а также размещением брусков, при условии, что внутри узла нет пустот.

Удивительно большое число для такой маленькой игрушки! Поэтому для решения задачи и понадобилась ЭВМ.

Как ЭВМ решает головоломки ?

Конечно, не так, как человек, но и не каким-то волшебным способом. Компьютер решает головоломки (и другие задачи) по программе, программы пишут программисты. Пишут, как им удобно, но так, чтобы было понятно и ЭВМ. Как же ЭВМ манипулирует деревянными брусками?

Будем исходить из того, что мы имеем набор из 369 брусков, отличающихся друг от друга конфигурациями выступов (этот набор первым определил Ван де Боер). В ЭВМ надо ввести описания этих брусков. Минимальный вырез (или выступ) в бруске - это кубик с ребром, равным 0,5 толщины бруска. Назовем его единичным кубиком. В целом бруске содержатся 24 таких кубика (рисунок 1). В ЭВМ для каждого бруска заводится "малый" массив из 6х2х2=24 чисел. Брусок с вырезами задается последовательностью 0 и 1 в "малом" массиве: 0 соответствует вырезанному кубику, 1 - целому. Каждый из "малых" массивов имеет свои номер (от 1 до 369). Любому из них можно присвоить еще номер от 1 до 6, отвечающий положению бруска внутри головоломки.

Перейдем теперь к головоломке. Представим, что она помещается внутрь куба размером 8х8х8. В ЭВМ этому кубу соответствует "большой" массив, состоящий из 8х8х8=512 ячеек-чисел. Поместить определенный брусок внутрь куба - это значит заполнить соответствующие ячейки "большого" массива числами, равными номеру данного бруска.

Сравнивая 6 "малых" массивов и основной, ЭВМ (т. е. программа) как бы складывает вместе 6 брусков. По результатам сложения чисел она определяет, сколько и каких "пустых", "заполненных" и "переполненных" ячеек образовалось в основном массиве. "Пустые" ячейки соответствуют пустому пространству внутри головоломки, "заполненные" - соответствуют выступам в брусках, а "переполненные" - попытке соединить вместе два единичных кубика, что, естественно, запрещено. Такое сравнение производится многократно, не только с разными брусками, но и с учетом их разворотов, мест, которые они занимают в "кресте", и т. п.

В результате отбирают те варианты, в которых нет пустых и переполненных ячеек. Для решения этой задачи достаточно было бы "большого" массива размером 6х6х6 ячеек. Оказывается, однако, что существуют комбинации брусков, полностью заполняющие внутренний объем головоломки, но при этом разобрать их невозможно. Поэтому программа должна уметь проверять узел на возможность разборки. Для этого Катлер и взял массив 8х8х8, хотя его размеры, возможно, недостаточны для проверки всех случаев.

Он заполняется информацией о конкретном варианте головоломки. Внутри массива программа пытается "двигать" бруски, т. е. перемещает в "большом" массиве части бруска размером 2х2х6 ячеек. Перемещение происходит на 1 ячейку в каждом из 6 направлении, параллельных осям головоломки. Результаты тех из 6 попыток, в которых не образуется "переполненных" ячеек, запоминаются как исходные положения для следующих шестерок попыток. В результате строится дерево всевозможных движений до тех пор, пока какой-нибудь брусок целиком не выйдет из основного массива или же после всех попыток останутся "переполненные" ячейки, что соответствует варианту, который невозможно разобрать.

Вот так были получены на ЭВМ 119 979 вариантов "Чертова узла", в том числе не 108, как полагали древние, а 6402 варианта, имеющих 1 целый, без вырезов брусок.

Суперузел

Обратим внимание, что Катлер отказался от исследования общей задачи - когда узел содержит и внутренние пустоты. В этом случае количество узлов из 6 брусков сильно возрастает и полный перебор, необходимый для поиска допустимых решений, становится нереальным даже для современного компьютера. Но как мы увидим сейчас, самые интересные и трудные головоломки содержатся именно в общем случае - разборку головоломки тогда можно сделать далеко не тривиальной.

Благодаря наличию пустот, появляется возможность последовательно передвинуть несколько брусков прежде, чем удастся полностью отделить какой-либо брусок. Движущийся брусок отцепляет некоторые бруски, разрешает движение следующего бруска и одновременно зацепляет другие бруски.

Чем больше нужно проделать манипуляций при разборке, тем интереснее и труднее вариант головоломки. Пазы в брусках расположены так хитро, что поиск решения напоминает блуждание по темному лабиринту, в котором все время наталкиваешься то на стены, то на тупики. Такого типа узел несомненно заслуживает и нового имени; мы будем называть его "суперузел". Мерой сложности суперузла назовем количество движений отдельных брусков, которые необходимо сделать до того, как первый элемент будет отделен от головоломки.

Мы не знаем, кто придумал первый суперузел. Наиболее знамениты (и наиболее трудны в решении) два суперузла: "колючка Билла" сложности 5, придуманная У. Катлером, и "суперузел Дюбуа" сложности 7. До сих пор считалось, что степень сложности 7 едва ли можно превзойти. Однако первому из авторов этой статьи удалось усовершенствовать "узел Дюбуа" и увеличить сложность до 9, а затем, используя некоторые новые идеи, получить суперузлы со сложностью 10, 11 и 12. Но число 13 остается пока непреодолимым. Может быть, число 12 является самой большой сложностью суперузла?

Решение суперузлов

Приводить чертежи таких трудных головоломок, как суперузлы, и не раскрывать их секретов было бы слишком жестоко по отношению даже к знатокам головоломок. Мы дадим решение суперузлов в компактной, алгебраической форме.

Перед разборкой берем головоломку и ориентируем так, чтобы номера деталей соответствовали рисунку 1. Последовательность разборки записывается в виде сочетания цифр и букв. Цифры означают номера брусков, буквы - направления движения в соответствии с показанной на рисунках 3 и 4 системой координат. Черта над буквой означает движение в отрицательном направлении оси координат. Один шаг - это перемещение бруска на 1/2 его ширины. Когда брусок передвигается сразу на два шага, его перемещение записывается в скобках с показателем степени 2. Если передвигают сразу несколько деталей, которые зацеплены между собой, то их номера заключают н скобки, например (1, 3, 6) х. Отделение бруска от головоломки отмечается вертикальной стрелкой.

Приведем теперь примеры лучших суперузлов.

Головоломка У. Катлера ("колючка Билла")

Она состоит из деталей 1, 2, 3, 4, 5, 6, показанных на рисунке 3. Там же приводится алгоритм ее решения. Любопытно, что в журнале "Scientific American" (1985, № 10) приведен другой вариант этой головоломки и сообщается, что "колючка Билла" имеет единственное решение. Различие между вариантами - всего в одном бруске: деталях 2 и 2 В на рисунке 3.



Рис. 3 "Колючка Билла", разработанна с помощью ЭВМ.

Из-за того, что деталь 2 В содержит меньше вырезов, чем деталь 2, вставить ее в "колючку Билла" по указанному на рисунке 3 алгоритму не удается. Остается предположить, что головоломка из "Scientific American" собирается каким-то другим способом.

Если это так и мы ее соберем, то после этого сможем заменить деталь 2 В на деталь 2, так как последняя занимает меньший объем, чем 2 В. В результате мы получим второе решение головоломки. Но "колючка Билла" имеет единственное решение, и из нашего противоречия можно сделать только один вывод: во втором варианте допущена ошибка в рисунке.

Аналогичная ошибка сделана еще в одной публикации (Дж. Слокум, Дж. Ботерманс "Puzzles old and new", 1986), но уже в другом бруске (деталь 6 С на рисунке 3). Каково же было тем читателям, которые пытались и, возможно, пытаются до сих пор решить эти головоломки?

Самодельные деревянные головоломки, представленные на нашем сайте:

07.05.2013.

Узлы из шести брусков.

Думаю, не ошибусь, если скажу, что узел из шести брусков - самая известная деревянная головоломка.

Есть мнение (и я его полностью разделяю!), что родились деревянные узлы в Японии, в качестве импровизации на тему традиционных местных строительных конструкций. Наверное, именно поэтому современные жители Страны Восходящего Солнца - непревзойденные головоломщики. В лучшем смысле этого слова.

Лет... дцать назад, воружившись взятым напрокат уникальным и по сей день станком для детского творчества "Умелые руки", я изготовил из дуба и бука много вариантов шестибрусковых узлов...

Независимо от сложности исходных компонентов, во всех вариантах этой головоломки имеется один прямой, без вырезов брусок, который всегда вставляется в конструкцию последним и замыкает ее в неразделимое целое.

Нижеприведенные страницы из уже упоминавшейся книги А.С.Пугачева показывают разнообразие узлов из шести брусков и дают исчерпывающую информацию для их самостоятельного изготовления.

Среди представленных вариантов есть очень простые, а есть и не очень. Как-то так получилось, что один из них (в книге Пугачева он фигурирует под номером 6) получил собственное название - "Крест адмирала Макарова".

Узел из шести брусков - Головоломка "Крест адмирала Макарова".

Не стану вдаваться в детали, почему она так называется - то ли потому, что славный адмирал в затишьях между морскими баталиями любил мастерить ее в корабельной столярке, то ли еще почему... Скажу лишь одно - вариант этот действительно непростой, при том, что в деталях отсутствуют так нелюбимые мною "внутренние" выемки. Уж больно их неудобно выковыривать стамеской!

На нижеприведенных картинках, созданных с помощью программы трехмерного моделирования Autodesk 3D Max, показан внешний вид деталей и решение (очередность и ориентация в пространстве) головоломки "Крест адмирала Макарова"

На занятиях по компьютерной графике в Детской художественной школе №2, помимо прочего-разного, в качестве учебных пособий я также использую макеты головоломок, сделанные "на скорую руку" из пенопласта. Например, детали креста из шести брусков отлично подходят в качестве "натуры" для низколиполигонального моделирования.

А простейший узел из трех брусков пригодится для понимания основ ключевой анимации.

Помимо прочего, в той же книге А.С.Пугачева есть чертежи и других узлов, в том числе из двенадцати и даже из шестнадцати брусков!

Узел из шестнадцати брусков.

Несмотря на то, что деталей много, собрать эту головоломку довольно просто. Как и в случаях с шестибрусковыми узлами, последней вставляется прямая, без вырезов деталь.

DeAgostini Журнал "Занимательные головоломки" №№ 7, 10, 17

В номере № 7 журнала "Занимательные головоломки" издательства "DeAgostini" представлена довольно любопытная, на мой взгляд, головоломка "Косой узел".

В ее основе лежит очень простой узел из трех элементов, но за счет "скособочивания" новый вариант стал гораздо сложнее и интереснее. Во всяком случае, мои ученики в художественной школе порой крутят-вертят его, а собрать не могут...

Да и я сам, кстати, собравшись смоделировать его в программе 3D Max, помучился изрядно...

На нижеприведенном скриншоте из журнала показана последовательность сборки "Косого узла"

Очень похожа по своей внутренней сути на представленный на этой странице "Узел из шестнадцати брусков" головоломка "Бочка-пазл" из номера 17 журнала "Занимательные головоломки".

Да, пользуясь случаем, хочу отметить высокое качество изготовления практически всех приобретенных мною головоломок издательства "DeAgostini". В некоторых случаях пришлось, правда, взять в руки напильник и даже клей, но это уж так... издержки.

Ниже показан процесс сборки головоломки "Бочка-пазл".

Не могу не удержаться и не сказать несколько слов об очень оригинальной "Крестовой говоломке" из той же серии "Занимательные головоломки" № 10. С виду это вроде тоже крест (или узел), из двух брусков, но чтобы рассоединить их, нужна не умная голова, а сильные руки. В смысле - нужно быстро закрутить, как волчок, головоломку на ровной поверхности, и она разберется!

Дело в том, что запирающие узел цилиндрические штырьки под действием центробежной силы расходятся в стороны и открывают "замок". Простенько, но со вкусом!